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Abstract—Now-a-days economy of electricity generation, quality of the generated and supplied electricity and emission of 
greenhouse gases from power plants are the main concern in power system operation. Good quality of electricity is to be pro-
duced with reduced cost and emission of greenhouse gases is to be controlled at the same time. These objectives can be achieved 
through solution of optimal power flow (OPF) problem. This paper applies a newly developed method called the earthworm 
optimization algorithm (EWA) to solve single-objective and multi-objective OPF problems. The performance of EWA in solving 
OPF problems has been tested on IEEE-30 bus, IEEE-57 bus and IEEE-118 bus test system. Different objectives such as fuel cost 
minimization, voltage profile improvement, emission reduction have been taken into account. Separate practical cases have been 
considered for multi-fuels and valve-point effect while calculating fuel cost. Superiority of the proposed algorithm over other 
well-known optimization algorithms has been established. 

Index Terms— Earthworm optimization algorithm, Equality constraint, Evolutionary algorithm, Inequality constraint, 
Meta-heuristic, Optimal power flow, Valve-point effect. 

——————————      —————————— 

1 INTRODUCTION                                                                     
With increasing load demand and ever expanding power 

generation, transmission and distribution network, the main 
concern is to minimize fuel cost as well as maintain the system 
efficiency simultaneously. In consideration of several equality 
and inequality constraints an optimal power flow (OPF) prob-
lem needs to be resolved to meet various objectives like fuel cost 
reduction, voltage profile improvement, emission reduction or 
others. This can be achieved by adjusting the control variables 
like active power generations, generator bus voltages, tap 
changing transformer ratios, shunt capacitor outputs.Here the 
equality and inequality constraints are power flow balance, 
generation and transmission limit, voltage profile maintenance 
and may include any other limit factors to improve the efficien-
cy of the power system. 

The OPF problem was first introduced by Carpentier in 
1962 and since then different optimization methods were for-
mulated to deal with multi-objective optimization problem. 
These methods can be broadly categorized into two techniques, 
namely the classical (deterministic) method and the 
metaheuristic (population based) method. 

 
Most of the classical methods need an initial point close to 

solution and the quality of the solution becomes immensely 
dependent on this initial setting as the number of control pa-
rameters of the problem increases. These classical methods can 
easily calculate local optimum but cannot always reach global 
optimum. They lack in continuity calculations, objective func-
tion differentiation and discrete variable adaptability. To over-
come these shortcomings metaheuristic or population based 
algorithms evolved lately and gradually helped to resolve com-
plex OPF computational problems. The development of com-
puter technologies over few decades aided the advancement of 
the metaheuristic algorithms and established better results for 
complex OPF problem resolution. 

Most common classical methods used in OPF problem reso-
lution are linear programming (LP) [1], [2], Newton-based 

method [3], [4], interior point methods (IPMs) [5], reduced gra-
dient method [6], dynamic programming and many others. 
These traditional methods suffered from difficulties in solving 
optimization problems fast and efficiently as they are based on 
formal logics and mathematical programming. 

The meta-heuristic or population based optimization tech-
niques emerged lately and is influenced by the biological evolu-
tion phenomenon or physical or swarm foraging process and 
the strategy focuses on searching for the optimal solution in the 
state space of the optimal solutions and hence quite effective in 
solving complicated power system calculation issues. These 
newly evolved metaheuristic methods use the random transi-
tion rules and have the ability of coping with large scale non-
linear problems without getting stuck in the local optimum. 
Swarm based algorithms are based on collective behaviours of 
animals which include particle swarm optimization (PSO) [7], 
ant colony optimization (ACO) [8], artificial bee colony (ABC) 
[9] and many others. PSO relies on the phenomenon of bird 
flocking when searching for the food. ACO is based on the fact 
that ants are able to remember the past paths by pheromone 
secretion. Many of these swarm based intelligent algorithms 
have been used in OPF problem resolution successfully. On the 
other hand, evolutionary algorithms (EA) are based on genetic 
evolution process and generally make use of different crossover 
operators. Some of the EAs include genetic algorithm (GA) [10], 
differential evolution (DE) [11] and biogeography based opti-
mization (BBO) [12]. 

In recent years, Reddy and Rathnam solved multi-objective 
OPF problems using glowworm swarm optimization algorithm 
(GSO) [13]. Abaci and Yamacli proposed a bio-inspired meta-
heuristic based on differential search algorithm (DSA) [14] to 
solve OPF problems in power systems. A day ahead Price based 
optimal reactive power dispatch (PORPD) problem is proposed 
by Malakar et al.which is solved by cuckoo search (CS) algo-
rithm [15]. Rajan and Malakar also proposed exchange market 
algorithm based optimum reactive power dispatch [16]. An im-
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proved strength pareto evolutionary algorithm to solve multi-
objective OPF problem is introduced by Yuan et al. [17]. Some 
other recently developed algorithms which has been applied to 
OPF problem or economic load dispatch problem solution in-
clude moth swarm algorithm (MSA) [18], improved artificial 
bee colony optimization algorithm (IABC) based on orthogonal 
learning [19], improved colliding bodies optimization algorithm 
[20], partitioning flower pollination algorithm [21], oppositional 
krill herd algorithm [22], grey wolf optimization [23], backtrack-
ing search optimization algorithm (BSA) [24] etc. 

Due to the variability of the objective function, it cannot be 
concluded that any specific optimization technique is the best 
and most efficient among all the metaheuristic methods. Hence 
the option and necessity for finding out a better approach to-
wards OPF problem resolution and formulating a better algo-
rithm to solve most of the OPF problems still prevail. 

The aim of this paper is to apply a new nature inspired evo-
lutionary algorithm called earthworm optimization algorithm 
(EWA) to solve single-objective and multi-objective OPF prob-
lems on IEEE 30-bus, 57-bus and 118-bus test systems. The 
EWA is proposed by Wang et al. in 2015 [25]. It is an optimiza-
tion technique based on two kinds of reproduction of the 
earthworms in nature. The weighted summation of the inde-
pendently generated offsprings from reproduction 1 and 2 are 
used to get the earthworm for the next generation. Several im-
proved crossover operators can be used in reproduction 2. Fi-
nally Cauchy mutation is applied to make certain earthworm 
escape from the local optima and improve its search ability. 

The remainder of this paper is organized in the following 
way. Section 2 details about the OPF problem formulation. Sec-
tion 3 depicts the description, steps and mathematical interpre-
tation of EWA. The results of MATLAB simulation of EWA 
based OPF problems are listed in section 4 with its performance 
evaluation in comparison to other popular meta-heuristic algo-
rithms for solving the OPF problems. The conclusions are 
drawn in section 5. 

 

2 OPF PROBLEM FORMULATION 
As mentioned earlier, the solution of OPF problem finds a set 
of control variables that can optimize predefined power sys-
tem objectives while maintaining system operating limits [26], 
[27]. 

 
2.1 Mathematical Expression 
The OPF problem can be formulated as follows [28], [9]. 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒            𝐹(𝒙,𝒖)                                      (1)                
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜         𝑔(𝒙,𝒖) =  0                               (2)    
𝑎𝑛𝑑                       ℎ(𝒙,𝒖) ≤  0                              (3)   
Where u is the vector of independent variables or control vari-
ables; x is the vector of dependent variables or state variables; 
F(x,u) is the objective function; g(x,u) is the set of equality con-
straints and h(x,u) is the set of inequality constraints. 
 

2.2 Control variables 
The solution of OPF problem tries to adjust the set of control 

variables which consists ofactive power generation at PV bus-
es except the slack bus (Pg), voltage magnitudes at PV busesor 
generator buses (Vg), tap settings of transformers (TAP) and 
shunt VAR compensation (Qc).Therefore, u can be expressed 
as follows. 
 
 𝒖𝑻 =
�𝑃𝑔2 . . .𝑃𝑔𝑁𝑔𝑒𝑛 ,𝑉𝑔1 . . .𝑉𝑔𝑁𝑔𝑒𝑛 ,𝑄𝑐1 . . .𝑄𝑐𝑁𝑐𝑎𝑝 ,𝑇𝐴𝑃1. . .𝑇𝐴𝑃𝑁𝑡𝑟𝑎𝑛𝑠� (4)                                                                                                                               
Where Ngen is the number of generators; Ncap is number of 
shunt VAR compensators and Ntrans is number of regulating 
transformers. 

2.3 State variables 
The set of state variables consideredin the formulation of OPF 
problem consists ofactive power generation at the slack bus 
(Pg1), reactive power output of all generator units (Qg), volt-
age magnitudes at PQ buses or load buses (VL) and line flow 
or transmission line loadings (Sl).Therefore, x can be ex-
pressed as: 
𝒙𝑇  =  �𝑃𝑔1,𝑄𝑔1  … 𝑄𝑔𝑁𝑔𝑒𝑛,𝑉𝐿1  … 𝑉𝐿𝑁𝑙𝑜𝑎𝑑 , 𝑆𝑙1 … 𝑆𝑙𝑁𝑙𝑖𝑛𝑒�      (5).                                                                                    
Where Nload is the number of PQ buses and Nline is the 
number of the transmission lines. 

2.4 Equality constraints 
The equality constraints are represented by typical load flow 
equations as follows, 
𝑃gi −  𝑃loadi − 𝑉i∑ 𝑉j𝑛

𝑗=1 �𝐺𝑖𝑗𝑐𝑜𝑠𝛿ij + 𝐵ij𝑠𝑖𝑛𝛿ij� = 0         (6)                                                                                               
𝑄gi −  𝑄loadi − 𝑉i∑ 𝑉j(𝐺ij𝑛

𝑗=1 𝑠𝑖𝑛𝛿ij − 𝐵ij𝑐𝑜𝑠𝛿ij) = 0                
(7)                                                                                                                                                                                                                
In the above equations, n is the number of buses and i=1, 
2,…,n. Usually, Newton Raphson or fast decoupled load flow 
methods are used for the solution of equality constraints. 

2.5 Inequality constraints 
The system operating limits are represented by the inequality 
constraints. The operating limits for the control variables are 
taken care while choosing those variables before the load flow 
is run in each generation. After the execution of the load flow 
in each generation the state variables are checked to see 
whether they are in the operating limits or not which deter-
mines the feasibility of the solution. The inequality constraints 
representing the minimum and maximum operating limits for 
the control and state variables are shown below. 
𝑃𝑔𝑖𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖𝑚𝑎𝑥                    𝑖 = �1,2, … ,𝑁𝑔𝑒𝑛�                           
(8) 
𝑄𝑔𝑖𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖𝑚𝑎𝑥                 𝑖 = �1,2, … ,𝑁𝑔𝑒𝑛�                         
(9) 
𝑉𝑔𝑖𝑚𝑖𝑛 ≤ 𝑉𝑔𝑖 ≤ 𝑉𝑔𝑖𝑚𝑎𝑥                   𝑖 = �1,2, … ,𝑁𝑔𝑒𝑛�                        
(10) 
𝑇𝐴𝑃𝑖𝑚𝑖𝑛 ≤ 𝑇𝐴𝑃𝑖 ≤ 𝑇𝐴𝑃𝑖𝑚𝑎𝑥            𝑖 = [1,2, … ,𝑁𝑡𝑟𝑎𝑛𝑠]                 (11) 
𝑄𝑐𝑖𝑚𝑖𝑛 ≤ 𝑄𝑐𝑖 ≤ 𝑄𝑐𝑖𝑚𝑎𝑥                     𝑖 = �1,2, … ,𝑁𝑐𝑎𝑝�                    
(12) 
𝑉𝐿𝑖𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖𝑚𝑎𝑥                        𝑖 = [1,2, … ,𝑁𝑙𝑜𝑎𝑑]                   
(13) 
𝑆𝑙𝑖 ≤ 𝑆𝑙𝑖𝑚𝑎𝑥                                          𝑖 = [1,2, … ,𝑁𝑙𝑖𝑛𝑒]                   
(14) 
(8), (9) and (10) represent generator constraints, (11) represents 
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the transformer constraints, (12) represent the shunt capacitor 
constraints and (13) and (14) represent security constraints. 

2.6 Penalty function 
The inequality constraints of state variables can be included 
into the objective function as quadratic penalty terms which is 
expressed as follows: 
𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 𝜆𝑃(𝑃𝑔1 − 𝑃𝑔1𝑙𝑖𝑚)2 + 𝜆𝑉 ∑ (𝑉𝐿𝑖 − 𝑉𝐿𝑖𝑙𝑖𝑚)2𝑁𝑙𝑜𝑎𝑑

𝑖=1 +

𝜆𝑄 ∑ (𝑄𝑔𝑖 − 𝑄𝑔𝑖𝑙𝑖𝑚)2𝑁𝑔𝑒𝑛
𝑖=1 + 𝜆𝑆 ∑ (𝑆𝑙𝑖 − 𝑆𝑙𝑖𝑙𝑖𝑚)2𝑁𝑙𝑖𝑛𝑒

𝑖=1                   (15) 

 Where λP, λV, λQ and λS are penalty factors and the 
details on selection of penalty factors are given in [29]. xlim is 
the limiting value of the state variables which can be ex-
pressed as follows: 

𝑥𝑙𝑖𝑚 = �
𝑥𝑚𝑎𝑥;           𝑥 > 𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛;            𝑥 < 𝑥𝑚𝑖𝑛

𝑥;    𝑥𝑚𝑖𝑛 < 𝑥 < 𝑥𝑚𝑎𝑥

�                                                     (16)  

By adding the penalty function of (15) with the objective func-
tion any unfeasible solution is declined [30]. 

2.7 Objective function 
Different single and multi-objective functions are used in this 
paper as listed below. 
2.7.1 Cost reduction 
This is the base case to minimize the fuel cost of generation 
which is defined by a quadratic function. So the objective 
function for fuel cost minimization is: 
𝐹1(𝒙,𝒖) = �∑ 𝛼𝑖

𝑁𝑔𝑒𝑛
𝑖=1 + 𝛽𝑖𝑃𝑔𝑖 + 𝛾𝑖𝑃𝑔𝑖2 � + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦                      (17) 

Where αi, βi and γi are cost coefficients of the ith generator. 
The values of the cost coefficients are considered as given in 
[24]. 
2.7.2 Cost minimization using numerous fuel sources 
Thermal power generation unit may have various fuel sources 
like coal, natural gas and oil and for them the curve for fuel 
cost can be represented by the following piecewise quadratic 
functions [31]. 
𝑓𝑖 = 𝛼𝑖𝑘 + 𝛽𝑖𝑘𝑃𝑔𝑖 + 𝛾𝑖𝑘𝑃𝑔𝑖2      𝑖𝑓  𝑃𝑔𝑖𝑘𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖𝑘𝑚𝑎𝑥                 (18) 

Where k denotes the fuel option. In this study, generators 1 
and 2 of IEEE 30 bus test system have two fuel options (k=1, 2) 
and the values of generator fuel cost coefficients are taken 
from [24]. Hence the objective function becomes 
𝐹2(𝒙,𝒖) = 𝐹𝐶𝑜𝑠𝑡𝑔1 𝑎𝑛𝑑 𝑔2 + 𝐹𝐶𝑜𝑠𝑡𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠 + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦    (19) 
Where 
𝐹𝐶𝑜𝑠𝑡𝑔1 𝑎𝑛𝑑 𝑔2 = ∑ 𝛼𝑖𝑘 + 𝛽𝑖𝑘𝑃𝑔𝑖 + 𝛾𝑖𝑘𝑃𝑔𝑖22

𝑖=1          𝑖𝑓  𝑃𝑔𝑖𝑘𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤
𝑃𝑔𝑖𝑘𝑚𝑎𝑥    𝑓𝑜𝑟 𝑓𝑢𝑒𝑙 𝑜𝑝𝑡𝑖𝑜𝑛 𝑘; 𝑘 = 1 𝑎𝑛𝑑 2                                    (20) 

𝑭𝑪𝒐𝒔𝒕𝑹𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒐𝒓𝒔 = ∑ 𝜶𝒊 + 𝜷𝒊𝑷𝒈𝒊 + 𝜸𝒊𝑷𝒈𝒊
𝟐𝑵𝒈𝒆𝒏

𝒊=𝟑                     (21) 
2.7.3 Cost minimization giving consideration to 

valvepoint effect 
A ripple-like effect is observed in generating units having 
multi-valve steam turbines [32]. To consider this valve-point 
effect, the fuel cost function can be extended by adding a re-
curring rectifying sinusoidal term to it [33]. Therefore, the ob-
jective function being non-continuous can be formulated in the 
following way [34]. 

𝐹3(𝒙,𝒖) = (∑ (𝛼𝑖 + 𝛽𝑖𝑃𝑔𝑖 + 𝛾𝑖𝑃𝑔𝑖2
𝑁𝑔𝑒𝑛
𝑖=1 + �𝜇𝑖 × sin �𝜔𝑖 ×

�𝑃𝑔𝑖𝑚𝑖𝑛 − 𝑃𝑔𝑖���)) + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦                                                                    
(22) 
Where 𝜇𝑖 and 𝜔𝑖 represents the coefficients of the valve-point 
effect and their values are taken from [24]. 
2.7.4 Cost minimization and voltage profile enhancement 
The voltage profile of any power system is related to the safety 
and service quality issues. The improvement of voltage profile 
of the power system means to minimize the voltage deviation 
from the unity at the load buses. This voltage deviation (VD) 
can be expressed by the following equation. 
𝑉𝐷 = (∑ |𝑉𝐿𝑖 − 1|)𝑁𝑙𝑜𝑎𝑑

𝑖=1                                                                (23) 
Therefore, the two-fold objective function considering voltage 
profile improvement and fuel cost reduction is as follows. 
𝐹4(𝒙,𝒖) = �∑ 𝛼𝑖

𝑁𝑔𝑒𝑛
𝑖=1 + 𝛽𝑖𝑃𝑔𝑖 + 𝛾𝑖𝑃𝑔𝑖2 � + 𝜆𝑉𝐷(𝑉𝐷) + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦   (24) 

Where λVD is a scaling factor which keep balance between the 
VD term and the cost term giving desired amount of im-
portance to each of them. 
2.7.5 Cost minimization using numerous fuel sources and 

voltage profile enhancement 
This instance considers the multi fuel options for the genera-
tors and the cost term is described by a piecewise quadratic 
function as in (19) and voltage deviation is calculated by (23). 
Therefore the objective function becomes as follows. 
𝐹5(𝒙,𝒖) = 𝐹𝐶𝑜𝑠𝑡𝑔1 𝑎𝑛𝑑 𝑔2 + 𝐹𝐶𝑜𝑠𝑡𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠 + 𝜆𝑉𝐷(𝑉𝐷) +
𝑃𝑒𝑛𝑎𝑙𝑡𝑦                                                                                     (25) 
Fcost g1 and g2 and Fcost Remaining Generators can be calculated by (20) and 
(21). 
2.7.6 Cost minimization giving consideration to valve-

point effect and voltage profile enhancement 
This instance takes into account the valve-point effect while 
calculating the fuel cost. Voltage profile improvement is con-
sidered as before. Therefore the objective function can be ex-
pressed by the following equation. 
𝐹6(𝒙,𝒖) = (∑ (𝛼𝑖 + 𝛽𝑖𝑃𝑔𝑖 + 𝛾𝑖𝑃𝑔𝑖2

𝑁𝑔𝑒𝑛
𝑖=1 + �𝜇𝑖 × sin �𝜔𝑖 ×

𝑃𝑔𝑖𝑚𝑖𝑛−𝑃𝑔𝑖))+𝜆𝑉𝐷𝑉𝐷+𝑃𝑒𝑛𝑎𝑙𝑡𝑦                                               
(26) 

2.7.7 Cost minimization and emission control 
One of the most important concern of the modern world is 
global warming and power industries are very much respon-
sible for that. So emission of the greenhouse gases in the envi-
ronment is to be controlled. An environment friendly policy 
namely carbon credit system or CCS motivates the power sec-
tor to reduce the emissions of NOx, SOx and CO2gases. The 
emission dispatch function is expressed as follows. 
𝐹𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = ∑ 10−2(𝑁𝑔𝑒𝑛

𝑖=1 𝑎𝑖 + 𝑏𝑖𝑃𝑔𝑖 + 𝑐𝑖𝑃𝑔𝑖2 ) + �𝑑𝑖𝑒�ℎ𝑖𝑃𝑔𝑖��       (27) 
Where ai, bi, ci, di and hi are emission coefficients of the ith 
generator and their values have been taken from [24].Hence 
the objective function in this case considering cost reduction 
and emission control is as follows. 
𝐹7(𝒙,𝒖) = �∑ 𝛼𝑖

𝑁𝑔𝑒𝑛
𝑖=1 + 𝛽𝑖𝑃𝑔𝑖 + 𝛾𝑖𝑃𝑔𝑖2 � + 𝜆𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝐹𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛) +

𝑃𝑒𝑛𝑎𝑙𝑡𝑦                                                                                        (28) 
Where λemission is a scaling factor to balance between the two 
objectives of cost reduction and emission control. 
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3 OPTIMIZATION TECHNIQUE: EARTHWORM 
OPTIMIZATION ALGORITHM (EWA) 

As mentioned earlier EWA is a nature-inspired evolutionary 
algorithm based on reproduction procedure of earthworms to 
solve optimization problems [25]. EWA is based on some basic 
rules as follows: (A) Each earthworm in the population can 
reproduce offsprings by two and only two kinds of reproduc-
tion. (B) The genes contained by the child earthworm has the 
same length as that of the parent earthworm. (C) Some earth-
worm individuals of the previous generation with best fitness 
pass on directly to the next generation without any change. 
Following is the brief description of EWA as applied to the 
OPF problems. 

3.1 Reproduction 1 
Earthworms are hermaphrodites which mean each earthworm 
carries both male and female sex organs. Therefore, a single 
parent earthworm can generate a child earthworm by itself. 
The mathematical expression for reproduction 1 is as follows. 
𝑢𝑖1,𝑗 = 𝑢𝑚𝑎𝑥,𝑗 + 𝑢𝑚𝑖𝑛,𝑗 − 𝛼𝑢𝑖,𝑗                                                     (29) 
Above equation describes the procedure of generating jth ele-
ment of child earthworm i1 from parent earthworm i. ui1,j and 
ui,j are jth element of earthworm i1 and i. umax,j and umin,j are 
maximum and minimum limits of the jth element of each 
earthworm. α is the similarity factor whose value lies between 
0 and 1 and it determines the distance between parent and 
child earthworm. 

3.2 Reproduction 2 
Reproduction 2 uses an improved version of crossover opera-
tors. There are three types of improved crossovers namely 
single point crossover, multipoint crossover and uniform 
crossover.Number of child earthworms (M) may be 1, 2 or 3 in 
most of the cases and number of parent earthworms (N) may 
be any integer that is more than 1. In this paper uniform 
crossover is applied with N=2 and M=1. Two parent earth-
worms P1 and P2 are selected using roulette wheel selection. 
They can be expressed as follows. 

𝑃 = �𝑃1𝑃2
�                                                                                     (30) 

Firstly, two offsprings u12 and u22 are generated from two par-
ents. A random number rand between 0 and 1 is generated 
and jth element of u12 and u22 can be generated as follows. 
If rand > 0.5,   𝑢12,𝑗 = 𝑃1,𝑗 and 𝑢22,𝑗 = 𝑃2,𝑗                             (31) 
Otherwise, 𝑢12,𝑗 = 𝑃2,𝑗 and 𝑢22,𝑗 = 𝑃1,𝑗                                  (32)  
Finally the generated earthworm ui2 from reproduction 2 are 
determined by (33) as follows. Let rand1 be another randomly 
generated number between 0 and 1. 

𝑢𝑖2 = �𝑢12     𝑓𝑜𝑟 𝑟𝑎𝑛𝑑1 < 0.5 
𝑢22                               𝑒𝑙𝑠𝑒

�                                                 (33) 

3.3 Weighted Summation 
After generating earthworms ui1 and ui2, the earthworm ui’ for 
the next generation can be formed as follows. 
𝑢𝑖′ = 𝛽𝑢𝑖1 + (1 − 𝛽)𝑢𝑖2                                                               (34) 
where, β is the proportional factor to adjust the proportion of 
the ui1 and ui2 and it can keep balance between global search 
and local search efficiently. It is given by (35). 

𝛽𝑡+1 = 𝛾𝛽𝑡                                                                                   (35) 
where t is the current generation. Initially at t=0, β=1. γ is a 
constant which is similar to cooling factor of a cooling sched-
ule in the simulated annealing (Pradhan et al., 2016). 

3.4 Cauchy mutation 
Cauchy mutation (CM) helps the solution to escape from local 
optima. Hence it improves the search ability of EWA. CM op-
erator for EWA can be expressed in the following way. 
𝑊𝑗 = �∑ 𝑢𝑖,𝑗

𝑁𝑝𝑜𝑝
𝑖=1 � / 𝑁𝑝𝑜𝑝                                                            (36) 

Where Wj is the weight vector for the jth element of popula-
tion i and Npop is the population size. 
The jth element of the final earthworm is as follows. 
𝑢𝑖,𝑗′′ = 𝑢𝑖,𝑗′ + 𝑊𝑗 ∗ 𝐶                                                                     (37) 
Here C is a random number which can be drawn from a Cau-
chy distribution with τ = 1 where τ is a scale parameter.  

3.5 Steps for EWA algorithm as applied to OPF in brief 
Begin 
Step 1: Initialize by setting crossover probability, initial 
mutation probability, elitism parameter (n), similarity factor, 
initial proportional factor, γ (similar to cooling factor) and 
maximum generation count. 
Step 2: Read the input data including system parameters, 
security limits for state variables, generator fuel cost coeffi-
cients, emission coefficients of generators and population size. 
Step 3: Assign values of control variables (elements of 
earthworm) randomly within the prescribed limits. 
Step 4: Check the feasibility of the population (earth-
worm). 
Step 5: Repeat step 3 and 4 until population size is 
reached. 
Step 6: Check for duplicity among the populations. If 
duplicated change any randomly selected element of the du-
plicated population and check the feasibility of the population. 
Step 7: Calculate the values of the objective functions for 
each population and arrange them in ascending order of these 
values. 
Step 8: Display the result for the best population.  
Step 9:  Save n numbers of best populations or earth-
worms of previous generation in a temporary array. 
Step 10: Produce an offspring using first way of reproduc-
ing. 
Step 11: Produce another offspring using second way of 
reproducing. 
Step 12: Take weighted summation of the two offsprings 
to get the new earthworm. 
Step 13:  Apply CM on the new earthworm to get final 
earthworm for the next generation. 
Step 14: Check the feasibility of the new population. 
Step 15: Repeat step 10 to 14 until population size is 
reached. 
Step 16: Repeat step 7. 
Step 17:  Replace n numbers of worst populations with the 
n numbers of best population of the previous generation. 
Step 18:  Repeat step 6, 7&8. 
Step 19: Repeat step 9 to 18 until the desired result is 
achieved or maximum generation count is reached. 
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End 

4 SIMULATION RESULTS AND DISCUSSION 
In this paper IEEE 30-bus, IEEE 57-bus and IEEE 118-bus test 
systems are used to test the effectiveness of the proposed 
EWA algorithm to solve different single and multi objective 
OPF problems. All of the simulation was performed in 
MATLAB 9.0 with 8 GB RAM and Intel Core i5 processor of 
the laptop. 

4.1 IEEE 30-bus test system 
The IEEE 30-bus test system consists of 6 generator buses, 24 
load buses and 41 branches of which 4 branches have tap set-
ting transformers and 9 buses have shunt capacitors connected 
to it. The operating limits for active power generation and 
voltage magnitudes at PV buses are taken from [35]. The trans-
former tap settings are considered within the interval 0.9 – 1.1 
p.u. and shunt capacitors are configurable from 0 to 5 MVAR 
[36]. The detailed data are taken from [35]. The cost and emis-
sion coefficients are same as that used in [24]. 
4.1.1 Cases with single objectives 

Case 1: OPF with cost minimization as objective 
This is a single objective case where the objective is to generate 
electricity with reduced cost. In this case the objective 
functionis expressed by (17). The optimal control variables 
obtained after running EWA technique are presented in Table 
1 and the optimal generation fuel cost obtained is 798.9858 $/h 
whereas with BSA technique this is 799.0760 $/h. Therefore 
the optimal fuel cost obtained using EWA is better than that 
obtained using BSA. Fig. 1 shows the convergence characteris-
tics of cost function using EWA for case 1 where the cost func-
tion has converged to the final value within 80 iterations. 

 
Fig. 1: Convergence characteristics for case 1 of single objective 

cases on IEEE 30-bus test system 
Case 2: OPF with cost minimization using numerous fuel 
sources as objective 
In reality there may be more than one fuel options for a gener-
ator. For IEEE 30-bus test system generator 1 and 2 have been 
considered to have multi-fuel options and the cost curve is 
represented by a piecewise quadratic function. Therefore, in 

this instance the objective function can be represented by (19). 
Table 1 representsthe optimal settings of control variables ob-
tained after running EWA technique. The most advantageous 
fuel cost established in this instance is 645.9819 $/h which is 
less that that obtained using BSA. The convergence character-
istics of the cost function using EWA is shown in Fig. 2. 

 
Fig. 2: Convergence characteristics for case 2 of single objective 

cases on IEEE 30-bus test system 
Case 3: OPF with cost minimization giving consideration to 
valve-point effect as objective 
The case minimizes the total generating cost considering the valve-
point effect and the objective function is represented by (22). Table 
1 represents the optimal settings of control variables obtained after 
running the optimization technique using EWA algorithm. The 
most advantageous fuel cost established in this instance is 830.2607 
$/h which is greater than that obtained in case 1 of single objective 
cases on IEEE 30-bus test system due to the valve-point effect of the 
multi-valve steam turbines. The convergence characteristics of the 
cost function for this case is displayed in Fig. 3. 

 
Fig. 3: Convergence characteristics for case 3 of single objective 

cases on IEEE 30-bus test system 
Table 2 reflects statistical analysis of the performance of EWA 
and that of some other popular algorithms like BSA, GSO, 
DSA, MSA, BBO, IABC, ABC, PSO, DE and GA when applied 
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to solve OPF problems on IEEE 30-bus test system with single 
objective. The performance evaluation shows that EWA is 
very efficient and consistent in giving better result in solving 
most of the OPF problems as compared to other algorithms. 
4.1.2 Cases with multi objectives 

Case 1: OPF with cost minimization and voltage profile en-
hancement as objectives 
As case 1 of single objective cases is purely cost objective based 
OPF, it may produce an undesirable voltage profile. To overcome 
these shortcomings a two-fold objective function aiming to mini-
mize cost and voltage deviation has been considered in this in-
stance. Here (24) represents the objective function. After several 
testing the scaling factor λVD has been taken as 1000. The optimal 
control variables obtained after running EWA technique for this 
case are presented in Table 3 and the optimal generation fuel cost 
and voltage deviation obtained are 803.3416 $/h and 0.1145 p.u. 
The conclusion that can be drawn from Table 3 is that voltage devi-
ation has decreased from 1.8390 p.u. to 0.1145 p.u. whereas the cost 
of fuel has increased from 798.9858 $/h to 803.3416 $/h to keep 
balance between the two objectives. Table 3 also shows the compar-
ison between EWA and BSA in which EWA reflects better result. 
Case 2: OPF with cost minimization using numerous fuel sources 
and voltage profile enhancement as objectives 
This scenario has similarity with case 1 of cases with multi objec-
tives where cost minimization and voltage profile enhancement 
both are taken as objectives. Here the only difference is that the 
multi-fuel options have been taken into account while calculating 
the fuel cost. The objective function for this instance can be depict-
ed by (25) where λVD has been taken as 1000 to keep balance be-
tween the two objectives. The OPF problem has been solved by 
optimization technique using EWA algorithm and the optimal 
results obtained in this case are displayed in Table 3. The optimal 
fuel cost and voltage deviation obtained are 652.4092 $/h and 
0.1160 p.u. which is much better than that obtained using BSA. 
Case 3: OPF with cost minimization giving consideration to 
valve-point effect and voltage profile enhancement as objectives 
This scenario is identical to case 1 of cases with multi objectives 
where cost minimization and voltage profile enhancement both are 
taken as objectives. Furthermore, in this instance the valve-point 
effect, of the generating units with multi valve steam turbines, is 
considered also. The corresponding objective function is expressed 
by (26). The problem has been solved by EWA algorithm and the 
results obtained in this case are displayed in Table 3. The optimal 
fuel cost and voltage deviation obtained are 836.5098 $/h and 
0.1171 p.u. Table 3 also shows comparative data between EWA and 
BSA in which superiority of EWA has been observed. 
Case 4: OPF with cost minimization and emission control as objec-
tives 
 In recent years the global warming has become an issue of 
threat to the human civilization. Therefore the emission of the 
greenhouse gases from the power plants needs to be controlled and 
at the same time the economy of the power system is to be main-
tained also. Hence we take the two-fold objective of cost reduction 
and emission minimization simultaneously and the corresponding 
objective function is expressed by (28). The scaling factor λemission 
is taken as 1000 in this instance to correlate the two objectives. The 
outcome obtained after running EWA technique is tabulated in 

Table 3. The optimal fuel cost and emission obtained are 834.9863 
$/h and 0.2423 ton/h which show that the generation fuel cost has 
raised from 799.0760 $/h to834.9863 $/h whereas the emission has 
reduced from 0.3662 ton/h to 0.2423 ton/h in comparison to case 
with single objective of cost reduction. Furthermore, the com-
parison between EWA and BSA shows that EWA has per-
formed better than BSA for this case. 

4.2 IEEE 57-bus test system 
The efficiency of the proposed algorithm is tested on IEEE-57 
bus test system also. The IEEE 57-bus test system consists of 7 
generator buses, 50 load buses and 80 branches of which 17 
branches have tap setting transformers and 3 buses have shunt 
capacitors connected to it. The operating limits for active pow-
er generation and voltage magnitudes at PV buses are taken 
from [35]. The transformer tap settings are considered within 
the interval 0.9 – 1.1 p.u. and shunt capacitors are configurable 
from 0 to 20 MVAR [18]. The detailed data are taken from 
(Ghasemi et al., 2014). The cost and emission coefficients are 
same as that used in [24]. 
4.2.1 Cases with single objectives 

Case 1: OPF with cost minimization as objective 
In this instance, (17) represents the objective function and this 
aims to minimize the generating fuel cost. The optimal control 
variables obtained after running EWA technique for this case 
are presented in Table 4. The optimal generation fuel cost ob-
tained using EWA is 5695.5984 $/h whereas as obtained using 
BSA is 6411.0043 $/h. This proves EWA has performed better 
for this case. The convergence characteristics of cost function 
using EWA is shown in Fig. 4. 

 
 
Fig. 4: Convergence characteristics for case 1 of single objective 

cases on IEEE 57-bus test system 
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Table 1:Optimal settings of the control variables as obtained for single objective cases of IEEE 30-bus test system 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2: Performance evaluation of EWA with BSA, DE, PSO, GA, ABC and BBO for solving different single objective OPF prob-

lems 
on 

IEEE 
30-
bus 
test 
sys-

tem 
 

Control variables Case 1 Case 2 Case 3 
EWA BSA EWA BSA  EWA BSA 

𝑃𝑔1(1) 177.1477 177.3838 139.9931 139.9204 199.9900 198.7223 
𝑃𝑔2(2) 48.5579 48.8335 54.9919 54.9886 41.5215 44.3031 
𝑃𝑔3(5) 21.3951 21.2907 23.8685 23.2095 18.0632 18.5637 
𝑃𝑔4(8) 20.7415 21.0186 30.3795 35.0000 10.4918 10.0000 
𝑃𝑔5(11) 11.9433 11.4675 19.5189 18.5930 11.2586 10.1017 
𝑃𝑔6(13) 12.2143 12.0602 21.0608 18.3118 12.2534 12.0000 
𝑉𝑔1(1) 1.0999 1.1000 1.0979 1.0863 1.0997 1.1000 
𝑉𝑔2(2) 1.0860 1.0806 1.0849 1.0699 1.0857 1.0778 
𝑉𝑔3(5) 1.0581 1.0545 1.0584 1.0403 1.0582 1.0520 
𝑉𝑔4(8) 1.0644 1.0633 1.0705 1.0532 1.0648 1.0574 
𝑉𝑔5(11) 1.0928 1.0946 1.0985 1.0679 1.0999 1.0802 
𝑉𝑔6(13) 1.0981 1.1000 1.0981 1.0541 1.0997 1.0803 
𝑇𝐴𝑃1(6−9) 1.0072 1.0250 1.0183 1.0625 1.0363 1.0000 
𝑇𝐴𝑃2(6−10) 0.9365 0.9000 0.9094 0.9125 0.9063 1.0125 
𝑇𝐴𝑃3(4−12) 0.9857 0.9625 0.9681 1.0000 0.9814 1.0250 
𝑇𝐴𝑃4(28−27) 0.9630 0.9625 0.9541 0.9875 0.9615 1.0000 
𝑄𝐶1(10) 4.9517 4.2998 4.8586 5.0000 4.9836 4.3411 
𝑄𝐶2(12) 4.9238 4.6378 4.8191 5.0000 4.9924 4.9527 
𝑄𝐶3(15) 4.6677 4.9106 4.8568 5.0000 4.9967 4.2358 
𝑄𝐶4(17) 4.9229 5.0000 4.9280 5.0000 4.9801 4.7605 
𝑄𝐶5(20) 4.5498 4.0889 4.2927 3.1123 4.3017 4.0597 
𝑄𝐶6(21) 4.9734 5.0000 4.7688 5.0000 4.9834 4.5901 
𝑄𝐶7(23) 2.9148 3.1843 2.7550 3.9314 2.7776 4.1971 
𝑄𝐶8(24) 4.8466 4.8423 4.8945 5.0000 4.9838 5.0000 
𝑄𝐶9(29) 2.4049 2.5810 2.1941 1.4393 2.3481 4.1450 
Cost ($/h) 798.9858 799.0760 645.9819 646.1504 830.2607 830.7779 
Power Loss (MW) 8.6000 8.6543 6.4124 6.6233 10.1793 10.2908 
Voltage Deviation (pu) 1.8390 1.9129 2.0336 1.0273 1.8857 1.2050 
Emission (ton/h) 0.3662 0.3671 0.2822 0.2833 0.4420 0.4377 

Algorithm Case 1  Case 2 Case 3 
Best Mean Worst Best Mean Worst Best Mean Worst 

EWA 798.9858 799.1211 799.4321 645.9819 646.2222 647.8751 830.2607 831.9243 834.2176 
BSA  799.0760 799.2721 799.6240 646.1504 647.5781 649.0638 830.7779 832.0811 834.3303 
GSO  799.0500 799.0600 799.9100 - - - - - - 
DSA  800.3887 - - - - - - - - 
MSA 800.5099 - - 646.8364 646.8603 648.0322 - - - 
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Ta-
ble 3: 

Op-
timal 

set-
tings of the control 
variables as ob-
tained for multi 
objective cases of 
IEEE 30-bus test 
system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BBO  799.1267 801.1927 803.1429 647.1179 651.0801 656.9323 831.4581 835.8153 842.5715 
IABC  799.3210 799.3210 799.3220 - - - - - - 
ABC  799.0541 799.6945 802.6327 648.5069 652.1451 657.9807 831.5783 834.4691 839.0831 
PSO  800.9310 - - 647.2879 681.7314 839.6854 837.5082 - - 
DE  799.0376 799.3047 801.5552 645.3627 646.7220 650.7419 830.4425 831.4997 842.7195 
GA  800.1636 802.6876 806.2791 649.9246 659.6545 671.9717 834.2424 840.9013 854.9337 

Control variables Case 1 Case 2 Case 3 Case 4 
EWA BSA  EWA BSA  EWA BSA  EWA BSA  

𝑃𝑔1(1) 176.1883 173.1714 139.9977 139.5920 199.8822 197.0323 112.9958 112.9189 
𝑃𝑔2(2) 48.8723 48.3093 54.9991 54.2062 39.4247 41.8254 58.9363 59.3719 
𝑃𝑔3(5) 21.5367 23.4476 28.1466 24.4755 18.0763 22.0463 27.6262 27.6576 
𝑃𝑔4(8) 21.9044 22.1097 26.8330 28.6711 14.9332 10.7320 34.9424 34.9989 
𝑃𝑔5(11) 12.3612 13.3916 18.0067 22.2083 10.5477 10.8690 27.2093 27.0652 
𝑃𝑔6(13) 12.2804 12.3455 22.8656 21.5854 12.0681 12.0000 26.7135 26.4502 
𝑉𝑔1(1) 1.0397 1.0441 1.0238 1.0356 1.0447 1.0514 1.0994 1.1000 
𝑉𝑔2(2) 1.0239 1.0245 1.0142 1.0177 1.0233 1.0278 1.0887 1.0855 
𝑉𝑔3(5) 1.0104 1.0037 1.0090 1.0037 1.0095 1.0086 1.0629 1.0606 
𝑉𝑔4(8) 1.0043 1.0005 1.0010 1.0012 1.0109 1.0018 1.0742 1.0757 
𝑉𝑔5(11) 1.0122 1.0316 1.0342 1.0240 0.9898 1.0263 1.0996 1.1000 
𝑉𝑔6(13) 1.0106 1.0049 1.0273 1.0111 1.0047 1.0061 1.0996 1.1000 
𝑇𝐴𝑃1(6−9) 1.0142 1.0500 1.0196 1.0375 0.9594 1.0250 1.0176 1.0000 
𝑇𝐴𝑃2(6−10) 0.9267 0.9000 0.9440 0.9000 0.9413 0.9125 0.9127 0.9500 
𝑇𝐴𝑃3(4−12) 0.9897 0.9625 1.0142 0.9875 0.9671 0.9625 0.9716 1.0000 
𝑇𝐴𝑃4(28−27) 0.9562 0.9625 0.9701 0.9625 0.9745 0.9750 0.9594 0.9625 
𝑄𝐶1(10) 4.9614 5.0000 4.9566 4.3687 3.2731 3.8622 4.8202 3.4844 
𝑄𝐶2(12) 3.8815 0.7241 0.2688 5.0000 2.4214 1.9742 4.8868 4.5129 
𝑄𝐶3(15) 4.9456 3.7630 4.8772 3.3418 3.3301 2.4068 4.8539 4.7990 
𝑄𝐶4(17) 1.9286 2.3539 2.7373 0.0000 0.1279 0.0000 4.9430 4.9965 
𝑄𝐶5(20) 4.9857 4.9912 4.9941 5.0000 4.8878 5.0000 4.2310 3.9809 
𝑄𝐶6(21) 4.9098 3.6589 4.9691 3.9460 4.7900 5.0000 4.9008 4.7684 
𝑄𝐶7(23) 4.7775 4.9775 4.9993 4.9261 4.9587 4.5359 2.7445 3.8535 
𝑄𝐶8(24) 4.8502 4.8500 4.9938 5.0000 4.9378 4.9781 4.9157 4.2332 
𝑄𝐶9(29) 1.0815 2.2713 3.4201 3.7995 3.8384 4.2463 2.2400 1.6339 
Cost ($/h) 803.3416 803.4294 652.4092 653.1019 836.5098 836.8811 834.9863 835.0199 
Power Loss (MW) 9.7430 9.3751 7.4479 7.3386 11.5320 11.1050 5.0236 5.0626 
Voltage Deviation (pu) 0.1145 0.1147 0.1160 0.1161 0.1171 0.1194 2.0805 1.9214 
Emission (ton/h) 0.3633 0.3546 0.2813 0.2805 0.4412 0.4300 0.2423 0.2425 
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Table 4:Optimal settings of the control variables as obtained for single objective cases of IEEE 57-bus test system 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Performance evaluation of for solving different single objective OPF problems on IEEE 57-bus test system 

Control variables Case 1 Case 2 
EWA BSA EWA BSA 

𝑃𝑔1(1) 571.5628 537.1555 570.9600 509.4963 
𝑃𝑔2(2) 97.5331 100.0000 98.0187 99.9995 
𝑃𝑔3(3) 76.5168 68.4433 77.9964 64.7584 
𝑃𝑔4(6) 98.8940 100.0000 93.6517 99.9946 
𝑃𝑔5(8) 89.9058 165.0000 61.8135 165.0006 
𝑃𝑔6(9) 99.8574 100.0000 79.5223 100.0000 
𝑃𝑔7(12) 260.8936 218.4831 315.0648 246.1003 
𝑉𝑔1(1) 1.0546 1.0600 1.0491 1.0600 
𝑉𝑔2(2) 1.0498 1.0531 1.0548 1.0548 
𝑉𝑔3(3) 1.0451 1.0315 1.0343 1.0382 
𝑉𝑔4(6) 1.0236 1.0152 1.0142 1.0257 
𝑉𝑔5(8) 1.0151 1.0147 1.0025 1.0278 
𝑉𝑔6(9) 1.0159 0.9962 1.0058 1.0082 
𝑉𝑔7(12) 1.0254 1.0092 1.0206 1.0204 
𝑇𝐴𝑃1(4−18) 0.9478 0.9250 0.9136 0.9500 
𝑇𝐴𝑃2(4−18) 0.9981 0.9750 0.9834 0.9625 
𝑇𝐴𝑃3(7−29) 0.9636 0.9500 0.9713 0.9500 
𝑇𝐴𝑃4(9−55) 0.9830 0.9375 0.9739 0.9500 
𝑇𝐴𝑃5(10−51) 1.0068 0.9500 0.9405 0.9500 
𝑇𝐴𝑃6(11−41) 0.9588 0.9125 0.9176 0.9000 
𝑇𝐴𝑃7(11−43) 0.9174 0.9375 0.9649 0.9375 
𝑇𝐴𝑃8(13−49) 0.9129 0.9125 0.9069 0.9125 
𝑇𝐴𝑃9(14−46) 0.9685 0.9375 0.9335 0.9375 
𝑇𝐴𝑃10(15−45) 0.9387 0.9500 0.9299 0.9625 
𝑇𝐴𝑃11(21−20) 0.9876 1.0125 1.0273 1.0250 
𝑇𝐴𝑃12(24−25) 0.9580 0.9250 0.9578 0.9500 
𝑇𝐴𝑃13(24−25) 1.0569 0.9375 0.9621 0.9125 
𝑇𝐴𝑃14(24−26) 0.9764 0.9875 1.0345 0.9875 
𝑇𝐴𝑃15(34−32) 1.0347 0.9125 0.9496 0.9250 
𝑇𝐴𝑃16(39−57) 0.9333 0.9625 0.9941 0.9625 
𝑇𝐴𝑃17(40−56) 0.9731 1.0000 1.0441 1.0125 
𝑄𝐶1(18) 15.7974 5.0000 19.2373 4.9582 
𝑄𝐶2(25) 5.3072 4.9944 4.9716 4.7275 
𝑄𝐶3(53) 7.0924 4.9773 7.6302 5.0000 
Cost ($/h) 5695.5984 6411.0043 5775.5420 6462.4093 
Power Loss (MW) 44.3646 38.2819 46.2262 34.5497 
Voltage Deviation (pu) 1.3230 1.1009 1.2410 1.2425 
Emission (ton/h) 2.2050 1.9726 2.2721 1.8333 
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Algorithm Case 1  Case 2 
Best Mean Worst Best Mean Worst 

EWA 5695.5984 5696.3319 5701.4682 5775.5420 5776.8849 5781.7863 
BSA 6411.0043 6411.7690 6414.9844 6462.4093 6464.3423 6468.4281 
BBO 6418.5723 6450.9358 6639.2789 6468.6389 6688.4624 11512.1470 
ABC 6411.4506 6423.8702 6449.4900 6467.8272 6477.5392 6493.1610 
PSO 6748.6052 - - 7149.1144 - - 
DE  6410.1888 - - 6462.7525 - - 
GA  6673.7958 - - 6737.3653 - - 

 
 

Table 6:Optimal settings of the control variables as obtained for multi objective cases of IEEE 57-bus test system 
Control variables Case 1 Case 2 

EWA BSA EWA BSA 
𝑃𝑔1(1) 557.6841 532.0307 336.8482 380.4090 
𝑃𝑔2(2) 98.4379 100.0000 94.8619 100.0000 
𝑃𝑔3(3) 60.0385 57.4381 132.0164 118.8113 
𝑃𝑔4(6) 98.8886 100.0000 97.9513 99.9954 
𝑃𝑔5(8) 88.7568 165.0000 135.5346 165.0018 
𝑃𝑔6(9) 98.2994 99.7228 84.9675 100.0000 
𝑃𝑔7(12) 292.9076 236.3389 394.2192 310.8383 
𝑉𝑔1(1) 1.0348 1.0307 1.0291 1.0600 
𝑉𝑔2(2) 1.0334 1.0235 1.0311 1.0560 
𝑉𝑔3(3) 1.0184 1.0111 1.0155 1.0433 
𝑉𝑔4(6) 1.0021 1.0039 1.0077 1.0237 
𝑉𝑔5(8) 1.02 1.0229 0.9738 1.0223 
𝑉𝑔6(9) 1.0247 1.0026 1.0148 1.0058 
𝑉𝑔7(12) 1.0029 1.0200 1.0016 1.0197 
𝑇𝐴𝑃1(4−18) 0.9747 1.0000 1.0173 0.9750 
𝑇𝐴𝑃2(4−18) 1.0366 0.9625 0.9994 0.9500 
𝑇𝐴𝑃3(7−29) 0.9594 0.9500 0.9765 0.9500 
𝑇𝐴𝑃4(9−55) 0.9933 0.9750 0.9437 0.9500 
𝑇𝐴𝑃5(10−51) 0.9787 1.0000 0.9480 0.9500 
𝑇𝐴𝑃6(11−41) 0.9007 0.9000 1.0651 0.9250 
𝑇𝐴𝑃7(11−43) 0.9507 0.9375 0.9345 0.9375 
𝑇𝐴𝑃8(13−49) 0.9422 0.9000 0.9528 0.9125 
𝑇𝐴𝑃9(14−46) 0.9134 0.9625 0.9085 0.9375 
𝑇𝐴𝑃10(15−45) 0.9689 0.9375 0.9152 0.9625 
𝑇𝐴𝑃11(21−20) 0.9828 0.9750 0.9545 1.0250 
𝑇𝐴𝑃12(24−25) 0.9967 0.9625 1.0343 0.9625 
𝑇𝐴𝑃13(24−25) 0.9301 0.9625 1.0381 0.9125 
𝑇𝐴𝑃14(24−26) 1.0272 1.0375 1.0699 1.0000 
𝑇𝐴𝑃15(34−32) 0.9559 0.9250 0.9081 0.9250 
𝑇𝐴𝑃16(39−57) 0.909 0.9125 0.9023 0.9750 
𝑇𝐴𝑃17(40−56) 1.0411 1.0250 0.9697 1.0125 
𝑄𝐶1(18) 16.7493 3.7851 16.6291 4.9368 
𝑄𝐶2(25) 5.979 5.0000 1.8421 4.9580 
𝑄𝐶3(53) 7.7724 5.0000 7.0691 5.0000 
Cost ($/h) 5737.2122 6436.7551 6636.7535 6652.9484 
Power Loss (MW) 44.2105 39.7304 25.5991 24.2558 
Voltage Deviation (pu) 0.6772 0.6888 1.2697 1.2286 
Emission (ton/h) 2.1567 1.9600 1.2450 1.2796 
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Table 7:Optimal settings of the control variables as obtained for the single objective case of IEEE 118-bus test system 
Case 1 using EWA 

Control variables Values Control variables Values Control variables Values 
𝑃𝑔1(1) 477.7648 𝑃𝑔46(103) 37.9421 𝑉𝑔37(80) 1.0057 
𝑃𝑔2(4) 33.6002 𝑃𝑔47(104) 1.6899 𝑉𝑔38(85) 1.0119 
𝑃𝑔3(6) 61.1196 𝑃𝑔48(105) 23.8418 𝑉𝑔39(87) 0.9882 
𝑃𝑔4(8) 42.2377 𝑃𝑔49(107) 11.7119 𝑉𝑔40(89) 1.0147 
𝑃𝑔5(10) 20.1128 𝑃𝑔50(110) 17.6310 𝑉𝑔41(90) 1.0038 
𝑃𝑔6(12) 173.7230 𝑃𝑔51(111) 37.0377 𝑉𝑔42(91) 1.0173 
𝑃𝑔7(15) 72.5895 𝑃𝑔52(112) 48.9904 𝑉𝑔43(92) 1.0053 
𝑃𝑔8(18) 46.8755 𝑃𝑔53(113) 16.0863 𝑉𝑔44(99) 1.0069 
𝑃𝑔9(19) 74.9478 𝑃𝑔54(116) 31.1419 𝑉𝑔45(100) 1.0223 
𝑃𝑔10(24) 31.2043 𝑉𝑔1(1) 1.0145 𝑉𝑔46(103) 1.0283 
𝑃𝑔11(25) 20.7422 𝑉𝑔2(4) 1.0198 𝑉𝑔47(104) 1.0136 
𝑃𝑔12(26) 117.0107 𝑉𝑔3(6) 1.0115 𝑉𝑔48(105) 1.0117 
𝑃𝑔13(27) 142.6273 𝑉𝑔4(8) 1.0100 𝑉𝑔49(107) 1.0112 
𝑃𝑔14(31) 43.3374 𝑉𝑔5(10) 1.0164 𝑉𝑔50(110) 0.9795 
𝑃𝑔15(32) 5.4571 𝑉𝑔6(12) 1.0308 𝑉𝑔51(111) 0.9894 
𝑃𝑔16(34) 19.3807 𝑉𝑔7(15) 1.0072 𝑉𝑔52(112) 0.9863 
𝑃𝑔17(36) 37.2842 𝑉𝑔8(18) 1.0039 𝑉𝑔53(113) 1.0267 
𝑃𝑔18(40) 59.7262 𝑉𝑔9(19) 1.0326 𝑉𝑔54(116) 1.0300 
𝑃𝑔19(42) 60.8611 𝑉𝑔10(24) 1.0099 𝑇𝐴𝑃1(8−5) 1.0251 
𝑃𝑔20(46) 57.7327 𝑉𝑔11(25) 1.0119 𝑇𝐴𝑃2(26−25) 1.0319 
𝑃𝑔21(49) 33.7434 𝑉𝑔12(26) 1.0150 𝑇𝐴𝑃3(30−17) 0.9708 
𝑃𝑔22(54) 146.8288 𝑉𝑔13(27) 1.0345 𝑇𝐴𝑃4(38−37) 0.9964 
𝑃𝑔23(55) 52.0292 𝑉𝑔14(31) 0.9915 𝑇𝐴𝑃5(63−59) 1.0424 
𝑃𝑔24(56) 40.9250 𝑉𝑔15(32) 1.0072 𝑇𝐴𝑃6(64−61) 0.9971 
𝑃𝑔25(59) 60.3546 𝑉𝑔16(34) 0.9876 𝑇𝐴𝑃7(65−66) 1.0979 
𝑃𝑔26(61) 147.6603 𝑉𝑔17(36) 0.9864 𝑇𝐴𝑃8(68−69) 0.9635 
𝑃𝑔27(62) 136.2140 𝑉𝑔18(40) 0.9818 𝑇𝐴𝑃9(81−80) 0.9840 
𝑃𝑔28(65) 46.1484 𝑉𝑔19(42) 0.9941 𝑄𝐶1(5) 0.5247 
𝑃𝑔29(66) 193.3027 𝑉𝑔20(46) 0.9860 𝑄𝐶2(34) 0.9290 
𝑃𝑔30(69) 247.4550 𝑉𝑔21(49) 0.9959 𝑄𝐶3(37) 0.0891 
𝑃𝑔31(70) 63.1080 𝑉𝑔22(54) 0.9911 𝑄𝐶4(44) 0.5721 
𝑃𝑔32(72) 18.8301 𝑉𝑔23(55) 0.9836 𝑄𝐶5(45) 4.3039 
𝑃𝑔33(73) 27.8665 𝑉𝑔24(56) 0.9964 𝑄𝐶6(46) 0.9818 
𝑃𝑔34(74) 39.3780 𝑉𝑔25(59) 0.9841 𝑄𝐶7(48) 10.9093 
𝑃𝑔35(76) 33.5423 𝑉𝑔26(61) 0.9824 𝑄𝐶8(74) 8.6821 
𝑃𝑔36(77) 8.7299 𝑉𝑔27(62) 0.9990 𝑄𝐶9(79) 19.3855 
𝑃𝑔37(80) 407.3962 𝑉𝑔28(65) 0.9916 𝑄𝐶10(82) 0.7848 
𝑃𝑔38(85) 29.4720 𝑉𝑔29(66) 1.0120 𝑄𝐶11(83) 9.3014 
𝑃𝑔39(87) 9.3085 𝑉𝑔30(69) 1.0150 𝑄𝐶12(105) 0.9448 
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𝑃𝑔40(89) 418.9805 𝑉𝑔31(70) 1.0093 𝑄𝐶13(107) 0.3103 
𝑃𝑔41(90) 31.7485 𝑉𝑔32(72) 1.0153 𝑄𝐶14(110) 0.0299 
𝑃𝑔42(91) 58.8636 𝑉𝑔33(73) 1.0128 Cost ($/h) 135195.2170 
𝑃𝑔43(92) 24.2787 𝑉𝑔34(74) 1.0000 Power Loss (MW) 60.4917 
𝑃𝑔44(99) 60.2427 𝑉𝑔35(76) 0.9966 Voltage Deviation (pu) 0.8129 
𝑃𝑔45(100) 141.6858 𝑉𝑔36(77) 1.0008   

 
 
 
 
Table 8: Performance evaluation of EWA with BSA, DE, PSO, GA, ABC and BBO for solving different single objective OPF prob-

lems on IEEE 118-bus test system 
Algorithm Case 1  

Best Mean Worst 
EWA 135195.2170 135240.0006 135337.8332 
BSA  135333.4743 135511.5451 135689.1275 
BBO 135263.7289 135684.1137 136611.2731 
ABC 135304.3584 135567.2697 135973.6155 
PSO  - - - 
DE - - - 
GA - - - 

 
 
 
Case 2: OPF with cost minimization giving consideration to 
valve-point effect as objective 
This case aims to minimize cost where the ripple-like valve-
point effect has been taken into consideration in the cost func-
tion. Hence the objective function for this scenario can be de-
picted by (22). EWA is run in order to have the optimal set-
tings of control variables and the results obtained are provid-
ed in Table 4. In this case the optimal fuel cost has raised from 
5695.5984 $/h to 5775.5420$/h in comparison to the previous 
case due to the valve-point effect of the multi-valve steam tur-
bines. The comparison between EWA and BSA in Table 4 con-
firms the superiority of EWA again. The convergence charac-
teristic of the cost function is displayed in Fig. 5. 

Fig. 5: Convergence characteristics for case 2 of single objective 
cases on IEEE 57-bus test system 

 
Table 5 shows statistical analysis of the performance of EWA 
and that of some other popular algorithms like BSA, BBO, 
ABC, PSO, DE and GA for solving single objective OPF prob-
lems on IEEE 57-bus test system. The performance evaluation 
shows that EWA performs better consistently for different 
objectives and gives better result in solving most of the OPF 
problems as compared to other algorithms. 
4.2.2 Cases with multi objectives 

Case 1: OPF with cost minimization and voltage profile en-
hancement as objectives 
This scenario has two-fold objective function aiming to reduce cost 
and voltage deviation and can be expressed by (24). The scaling 
factor λVD has been taken as 10000 to keep balance between the 
two objectives. The optimal control variables obtained after run-
ning EWA technique for this case are presented in Table 6 and the 
optimal fuel cost for power generation and voltage deviation ob-
tained are 5737.2122 $/h and 0.6772 p.u. which shows further im-
provement of voltage profile with a little compromise to the fuel 
cost as compared to the single objective case on IEEE 57-bus test 
system with cost reduction as objective. Table 6 shows EWA per-
forms better than BSA in this case. 
Case 2: OPF with cost minimization and emission control as ob-
jectives 
This case aims to minimize cost and emission simultaneously and 
the corresponding objective function is expressed by (28). The scal-
ing factor λemission is selected as 1000 for this case. The results 
obtained after running EWA technique are presented in Table 6 
where the optimal fuel cost and emission obtained are 6636.7535 
$/h and 1.2450 ton/h. This shows that the generation fuel cost has 
increased from5745.3827 $/h to 6636.7535 $/h whereas the emis-
sion has reduced from 2.1723 ton/h to 1.2450 ton/h in comparison 
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to the case 1 of single objective cases on IEEE 57-bus test system. 
Simulation results show that EWA has performed better than BSA 
for this case. 

4.3 IEEE 118-bus test system 
An even more larger-scale test system namely IEEE 118-bus test 
system is used to test the efficiency of the proposed algorithm. The 
IEEE 118-bus test system consists of 54 generator buses, 64 load 
buses and 186 branches of which 9 branches have tap setting trans-
formers and 14 buses have shunt capacitors connected to it. The 
operating limits for active power generation and voltage magni-
tudes at PV buses are taken from [35]. The transformer tap settings 
are considered within the interval 0.9 – 1.1 p.u. and shunt capaci-
tors are configurable from 0 to 30 MVAR [36]. The detailed data 
and the cost coefficients are derived from [35]. 
4.3.1 Case with single objective 

Case 1: OPF with cost minimization as objective 
In this scenario, the objective function can be depicted by and this 
aims to minimize the fuel cost for power generation. The optimal 
control variables obtained after running EWA technique for this 
case are given in Table 7 and the optimal generation fuel cost ob-
tained is 135195.2170 $/h. The optimal fuel cost obtained using 
BSA is 135333.4743 $/h. Therefore it can be concluded that EWA 
performs better than BSA even for the larger-scale power systems. 
The convergence characteristic for the cost function is displayed in 
Fig. 6 which shows EWA converges to the final result within 60 
iterations. 
The performance of EWA has been evaluated in comparison to that 
of some other popular algorithms like BSA, BBO, ABC, PSO, DE 
and GA for solving OPF problem on IEEE 118-bus test system. The 
simulation result for EWA and other algorithms are recorded in 
Table 8 for OPF problem with cost reduction as objective on IEEE 
118-bus test systems. The comparative performance evaluation 
shows that EWA is very efficient and gives better result for large 
scale test systems also. 

 

Fig. 6: Convergence characteristics for case 1 of single objective 
cases on IEEE 118-bus test system 

5 CONCLUSION 

In this article, an attempt has been made to use a newly 
developed evolutionary algorithm namely earthworm 
optimization algorithm (EWA) for solution of different OPF 
problems. IEEE 30-bus, 57-bus and 118-bus test systems are 
used to test the superiority of the proposed algorithm. 
Simulation results followed by performance evaluation show 
the superiority of EWA over other existing control algorithms 
like BSA, DE, PSO, ABC, GA and BBO. Moreover EWA has 
good convergence characteristics. This confirms that the 
proposed EWA method can effectively handle several single 
and multi-objective OPF problems and is a very efficient and 
promising one to solve OPF problems even in large-scale 
power systems. 
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